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Abstract
In this paper, a general technique for evaluation 6f measurements by the method of
Least Squares is presented. The input to the method consist of estimates and associated
uncertainties of the values of measured quantities together with specified constraints
between the measured quantities and any additional quantities for which no information
about their values are known a priori. The output of the method consist of estimates of
both groups of quantities that satisfy the imposed constraints and the uncertainties of
these estimates. Techniques for testing the consistency between the estimates obtained by
measurement and the imposed constraints are presented. It is shown that linear regression
is just a special case of the method. It is also demonstrated that the procedure for
evaluation of measurement uncertainty that is currently agreed within the metrology
community can be considered as another special case in which no redundant information
is available. The practical applicability of the method is demonstrated by two examples.

1 Introduction
In 1787, the French mathematician and physicist Laplace (1749-1827) used the method
of Least Squares to estimate 8 unknown orbital parameters from 75 discrepant observa-
tions of the position of Jupiter and Saturn taken over the period 1582-1745. Since then,
the method of Least Squares has been used extensively in data analysis. Like Laplace,
most people use a special case of the method, known as unweighted linear regression. The
calculation of the average and the standard deviation of a repeated set of observations
is the most simple example of that. The unweighted regression analysis is based on the
assumptions that the observations are independent and have the same (unknown) vari-
ance. In addition, the linear regression is based on the assumption that the observations
can be modelled by a function that is linear in the unknown quantities to be determined
by the regression analysis. For most measurements carried out in practice, none of these
assumptions can be justified. In order to evaluate the result of a general measurement,
in which some redundant information has been obtained, one therefore has to apply the
method of Least Squares in its general form.

This paper describes how measurements can be evaluated by the method of Least
Squares in general. The paper is based on an earlier work of the author [2] but includes
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several new features not published before as well as practical examples from the daily
work at DFM. An alternative approach is described in [6].

2 Measurement model
In a general measurement, a number m > 0 of quantities is either measured directly using
measuring instruments or known a priori, for example from tables of physical constants
etc. The (exact) values of these m quantities are denoted C

Due to measurement uncertainty, the values z obtained by the measurement (or from
tables etc.) Z. = (z1, ..., Z.) T

are only estimates of the values C. The standard uncertainties of the estimates zi,

u(zi) ,,

are determined in accordance with the GUM [1] and depend on the accuracy of the
instruments and the reliability of any tabulated value used. In general, some of the
estimates zi may be correlated. If r(zi, zj) is the correlation coefficient between the
estimates zi and z. then the covariance u(zi, zj) between these two estimates is given by

u(zi, zj) = u(zi)r(zi, zj)u(zj).

Because of the uncertainty, the estimates z can be considered as an outcome of a m-
dimensional random variable Z with expectation C (the exact values of the quantities)
and covariance matrix JE

7 u2 (zi) u(zi' z2 ) ... u(zi' zm)
,) U(Z2 ,Z1) U2(Z2 ) ... U(Z2, Z,)

• ~zzT=. ... I
u(zm,zO) u(zm,z2) ... u2(z)

In addition to the m quantities for which prior information is available either from
direct measurement or from other sources, a general measurement may involve a number
k > 0 of quantities for which no prior information is available. The values of these
quantities are denoted by

1 = (13i,...,f•k)T .

In general, the values 3 and C are constrained by a number n of physical or empirical
laws. These constraints may be written in terms of an n-dimensional function

,f(/, 0)
""f2(•)3 :C , kn<m+k. (2.1)

fnR, (A
It is assumed that fi :Q - R ,i -- 1... n, are differentiable functions (with con-
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tinuous derivatives) defined in a region Q c Rk~m around (0, C). As indicated in (2.1),
the number n has to be larger than or equal to the number k of quantities for which no
prior information is available; otherwise some of the values /3 cannot be determined. In
addition, the number n of constraints has to be smaller than the total number k + m of
quantities involved; otherwise the values of / and C would be uniquely determined by
the constraints and no measurements would be needed.

The estimates z, the covariance matrix E and the n-dimensional function f(/3, C) are
the input to the general Least Squares method. It should be stressed that no probability
distribution has to be assigned to the input estimates z. On the contrary, if a probability
distribution has been assigned to an estimate, it should be used to calculate the mean
value and the variance of the estimate which should then serve as input to the Least
Squares method.

Like any other covariance matrix, the covariance matrix u(z, zT) = ]E is positive
semi-definite. Otherwise, at least one linear combination xTz of the estimates z would
have negative variance u(xTz, zTx) = xTTEX. In the following it is assumed that :E is
positive definite and therefore non-singular.

3 Normal equations

Least Squares estimates / and C of the values /3 and C are found by minimizing the
chi-square function

x2((; Z) = (Z- _C)T -(z- )

subject to the constraints
f(/,C) = 0.

It is convenient to solve this minimization problem by using Lagrange multipliers [5]:
If a solution (/, €) to the minimization problem exists, the solution satisfies the equation

V( ,A)(D A z) = 0

where
O(/3, (, A; z) = (z - C)TE-I(z - C) + 2A•T f(/3, C)

for a particular set of Lagrange multipliers A -- (i,... ,An)T. By taking the gradient of
the function 4, the following n + m + k equations in (/3, C, A) evolve:

V3f(/3,C)TA\ 0,

-E- (Z-- + = 0, (3.1)
f(/3,C) = 0,

where
j2_ Of~ ~r901 Oak 019( " 1,

Vof= I " and Vcf= . . "

Of 2f-...Of
T u 01 arek c(t Square(

The equations (3.1) are called the normal equations of the Least Squares problem.
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4 Solving the normal equations

If (,31, C1, A,) is an approximate solution to the normal equations, a refined solution
(31+1, , )can be found by the iteration

(il ACl, 7 =l,....,1 0.

The step (A/)3, ACE, A1+l) is given by

D= ( 1E-(z-) ) (4.1)K z~ -f(i3 1 , ¢1 )

where

D()31,C)1 ) = o(mk) E-1 Vcf(/30, z)T (4.2)
V pf(/ /1 ,Cz) V jf()31, C ) o(n 'n)

is a symmetric matrix. This iteration procedure is similar to Newton iteration except
that the second order partial derivatives of the functions fi have been neglected as it is
practice to do in non-linear Least Squares estimation [4].

In order to reduce the effects of numerical rounding errors, it is recommended to calcu-
late the step (A/)3, AC1, A1+1) by solving the linear equations (4.1) by Gauss-Jordan elim-
ination with full pivoting [4]. This algorithm also provides the inverse matrix D ()3, Cl)-1
which is needed at the final stage for estimating the covariance matrix of the solution as
shown in Section 5.

If proper starting values ()31, C1 ) are selected, the iteration is expected to converge
towards the solution (13, C)

C 11
A -- im

Since the solutions ý are expected to be close to the estimates z of C available a
priori, the estimates z are obviously the proper starting values C1 to be selected for
the iteration. The selection of proper starting values )1 is more difficult in general. If,
however, f(,3, C) are linear functions in the variables 13, the iteration process will converge
after a few iterations, independent of the choice of 31.

Most differentiable functions f(03, C) can be handled by the described method. In
order to get reliable standard uncertainties, it is required, however, that the function
can be approximated by a first order Taylor expansion, i.e.

f(,3, C) fi, €) + V~f (, ý)()3 - ) + Vjf(3, €)(C -

when the values/3 and C are varied around the solution 1 and ý on a scale comparable to
the standard uncertainties of the solution. If this vaguely formulated criterion is met, the
function f(/3, C) is said to be linearizable. Note that almost any differentiable function
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will be linearizable if the standard uncertainties are sufficiently small. On the other
hand, if the uncertainties are sufficiently high, all non-linear functions will no longer be
linearizable. The requirement that f(,3, () is linearizable is considered to be the only
major limitation of the method of Least Squares!

It should be mentioned that the minimization using Lagrange multipliers will fail in
case the gradients Vofi and Vcfi of one of the constraint functions fi are both equal to

zero at the point of the solution (3,3 ,). This gives some restrictions on how a constraint
may be formulated. A function fi defining a constraint may, for example, be replaced by
the square of that function, f•. But since fit/3, C) = 0, the gradient of f2 will be zero at
the point of the solution (/3, C) although the gradient of f, is not.

5 Properties of the solution
Since the solution (/3, ý, A) depends on the estimates z, which are considered as the
realization of the multivariate random variable Z, the solution (/3, C, A) can also be
regarded as a multivariate random variable. If the functions fi (3, C) are linearizable, the
estimates (A, C) are linear in Z

S3, ( E-)(Z- (5.1)

A 0 0(n,1)

In that case, the expectation of the solution is

which means that (0, C) are central estimators of the values (/3, C). Under the same
assumption, the covariances of the solution are given by the symmetric matrix D(/3, C) 1

provided by the Gauss-Jordan elimination algorithm 2

( U(nkT) U(nmT) u(kn)A

u(ý,•T) u(ý,€T) ()('•,V,) D D()3,() -1 - D f,)1. (5.2)

This relation can be derived as follows. Partition the symmetric matrix D-1 into nine
sub-matrices similar to the left hand side of (5.2) or similar to the partitioning of D
according to the definition (4.2). Express the covariance matrix of the solution (5.1) in
terms of the covariance matrix E of the random variable Z and the matrix D-1. Insert
the partitioned D- 1 into the resulting matrix double product and express the covariances
of the solution in terms of E-1 and the sub-matrices of D- 1. Reduce these expressions
to the final result by multiple use of the nine relations between the sub-matrices of D-1
and D derived from the identity DD- 1 = I.

2 The empty brackets in the left hand matrix indicates the parts of D- 1 that do not contain information about
covariances.
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From equation (5.1) and (5.2) the covariance matrices between (/, 4) and the estim-
ates z are found to be

u(Z, T) =U(4, T)

U(Z T) = u(C T).

From the last of these two relations, a relation of particular interest is derived,

U(Z -- •ZT -- CT) =• U(Z, ZT) _ U(•, T)

For the diagonal elements, this relation reads

u 2(z4-))=u 2 (z,)-u 2 (4i) , i=1,...,m.

That is, the variance of the difference between the initial estimate zi of ( and the refined
estimate (i is equal to the variance of zi minus the variance of 4/. This relation is useful
when testing if the difference zi - (i is significantly different from its zero expectation.

6 X2 test for consistency

When the estimates (/, C) have been found, the minimum X2 value
x2(4; Z) = (Z)_ E 1 (z-4)

can be used to test if the measured values z are consistent with the measurement model
(2.1) within the uncertainties defined by the covariance matrix E. If the model is lin-
earizable, the expectation of the random variable X2 (4; Z) is equal to the number m of
measured quantities, minus the number m + k of adjusted quantities, plus the number
n of constraints, that is

E [X2(4; Z)] =m-(m+k)+n=n-k=v.

If, in addition, the random variables Z are assumed to follow a multivariate normal
distribution with mean values C and covariance matrix E2, the random variable X2 (4; Z)
will follow a X2 (v) distribution with v = n - k degrees of freedom. In that case, the
probability p of finding a X2 value larger than the value X 2 (4; z) actually observed can
be calculated from the X2 () distribution

p = P{X2(v) > X2(,z)} = 1- P{X2(V) • X2(,z)}.

If this probability p is smaller than a certain value a, the hypothesis that the meas-
ured values are consistent with the measurement model has to be rejected at a level of
significance equal to a. As the result of measurements are normally quoted at a 95% level
of confidence, an a = 5% level of significance is a reasonable choice for the consistency
test.

Although the assumption of a normal distribution of Z may not be fulfilled, it is
suggested to carry out the test of consistency as described above anyway. This is justified
by the fact that a value of X2 (; z) significantly higher than the expectation v indicates
inconsistency no matter what the distribution of Z might be. The calculated probability
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p simply describes how unlikely the observed X2 value is if a normal distribution is
assigned to Z.

7 Normalized deviations

If the test described in the previous section leads to a rejection of the measurements,
a tool for identifying the outlying measurements is desirable. A measured value zi is
defined as an outlier if the difference zi - • is significantly different from zero taking
into account the standard uncertainty u(zi - ýi) of that difference. This leads to the
introduction of the normalized deviation di defined by3

zi - (i zi - (di=-z __ , i=l,...,m.
= - _

The normalized deviation di has zero expectation and variance 1. A normalized de-
viation with Idil larger than 2 or 3 is therefore rather unlikely no matter what the
distribution of the random variable di might be.

If a multivariate normal distribution is assigned to Z and the model function f(f, ()
is linearizable, the normalized deviation di is normally distributed,

di e N(O, 1) , i=1,...,m.

In that case
P{Idil > 2} = 5%,

and a measurement with Idil > 2 is therefore identified as an outlier at a 5% level of
significance. It is suggested to use the criteria Id•i > 2 to identify potential outliers even
if the distribution assigned to Z is not normal.

8 Adjustment of a variance o 2

If some values zi have a common but unknown variance u 2 (z,) = a 2 , this variance can
be estimated by adjusting a 2 by an iterative procedure until the "observed" X2 value
becomes equal to its expectation value v

X2(4;Z) = (Z - 4)T -(z -) V,

where the covariance matrix E is a function of the unknown variance U2 . As the estimates
C depends on the value assigned to a 2 , these estimates have to be updated together with
the estimates ý each time the value of o.2 is changed during the iteration.

This way of estimating the unknown variance a 2 leads to the well-known expression
for the standard deviation in the case of a repeated measurement of a single quantity as
shown in Section 13.

3
]f u(zi - ýi) t0, the difference zi - ýi will be zero as well and di may be set equal to zero. This situation occurs

whenever there is no 'redundant information available regarding the value of the quantity ýi.
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9 Example: Calibration of an analytical balance
An analytical balance with capacity Max=220 g, resolution d=0.1 mg, and built-in ad-
justment weight was calibrated by DFM in October 1999 during an inter-laboratory
measurement comparison piloted by DFM. Two mass standards were used as reference
standards. One of them was a traditional 200 g weight (named R200g) of known con-
ventional mass value4 mR and density PR. The other reference standard was a specially
designed 200 g stack of weights consisting of four discs (named 100g, 50g, 25g and 25g*)
machined from the same metal bar of known density p. The conventional mass val-
ues mi, M 2 , m3, M4 respectively of these four discs were not known a priori; only the
conventional mass value MS = MI + M 2 + -M 3 + M 4 of the stack was known.

The calibration was performed by placing a weight combination at the weighing pan
of the balance and by recording the corresponding average indication I in the display.
A total of 18 weight combinations were used. Each weight combination was weighed 3
times from which the average indication was calculated. The calibration was repeated 4
times during a period of 10 days in which the inter-laboratory comparison took place.
From these four calibrations, a grand average indication Ii, i = 1, ... , 18 was calculated
for each of the 18 weight combinations specified in Table 1. The standard uncertainty of
the grand average was estimated from the observed variation in indication over the four
calibrations.

I11 2 13 14 15 16 17 18 19
100g lOOg lOOg 100g Ho0g 100g 100g 100g loog
50g 50g 50g 50g 50g 25g 25g* 25g
25g 25g 25g 25g* 25g*
25g* 25g*
110 Ini 112 113 114 115 116 117 118
50g 50g 50g 50g 25g 25g 25g* R200g R200g
25g 25g 25g* 25g*
25g*

TAB. 1. The weight combinations corresponding to the 18 balance indications Ii.

Due to the effect of air buoyancy, the balance indication depends not only on the
mass of the weighed body, but also on the density of the body as well as the density of
the air. When calibrated in air of known density a, the reference indication IR of the
balance corresponding to a load generated by a weight with conventional mass value m
and density p is given by

'IR =m (1-(a-ao) (1

where a0=1.2 kg/mi3 and p0= 8 0 0 0 kg/mi3 are the reference densities of the air and the
weight respectively to which the conventional value of mass refers. As a model for the

4 The conventional mass value of a body is defined as the mass of a hypothetical weight of density 8000 kg/m3

that balances the body when weighed in air of density 1.2 kg/m
3

and temperature 20 °C.
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ms mR pR P a
[g] [g] [kg/m 3 ] [kg/m 3 ] [kg/m 3 ] [div]

z 199.988816 199.999043 7833.01 7965.76 1.1950 199.988617
u(z) 0.000010 0.000008 0.29 0.71 0.0035 0.000023

199.988814 199.999043 7833.01 7965.76 1.1946 199.988620
u(ý) 0.000010 0.000008 0.29 0.71 0.0035 0.000011
d 1.66 -1.66 1.66 -1.66 1.66 -0.16

12 13 14 15 16 17
[div] [div] [div] [div] [div] [div]

z 199.988608 174.992133 175.009992 150.013558 149.980675 125.002083
u(z) 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023

199.988620 174.992149 175.010024 150.013558 149.980672 125.002087
u(ý) 0.000011 0.000012 0.000012 0.000013 0.000012 0.000014
d -0.56 -0.77 -1.61 0.03 0.14 -0.20

/8 19 110 Inl 112 113
[div] [div] [div] [div] [div] [div]

z 124.984217 100.005650 99.982925 74.986433 75.004325 50.007892
u(z) 0.000023 0.000023 0.000023 0.000023 0.000023 0.000023

S124.984212 100.005632 99.982899 74.986450 75.004325 50.007881
u(C) 0.000014 0.000013 0.000013 0.000014 0.000014 0.000012
d 0.25 0.93 1.38 -0.87 0.03 0.54

114 115 116 117 118
[div] [div] [div] [div] [div]

z 49.974992 24.978533 24.996417 199.998867 199.998875
u(z) 0.000023 0.000023 0.000023 0.000023 0.000023
S49.974995 24.978557 24.996432 199.998851 199.998851
u(ý) 0.000013 0.000011 0.000011 0.000011 0.000011
d -0.19 -1.17 -0.77 0.78 1.19

f A ml 7112 m3 M4
[g/div] [1/div] [g] [g] [g] [g]

3 1.00000186 -4.4E-09 100.005774 50.007963 24.978601 24.996476
u(i) , 0.00000019 1.OE-09 0.000011 0.000010 0.000010 0.000010

TAB. 2. Measured and estimated values and associated standard uncertainties.

calibration curve of the balance, a second order polynomial through zero is assumed

IR = f (I+ AP2 )

where f and A are unknown quantities to be determined from the calibration data.

In this example, there are m = 23 quantities for which prior information is available
from the measurements performed:

C=(rns,mRPR, p, a, I1,...,18)
T

whereas there are k = 6 quantities for which no prior information is available:

S= (f,A, ml,m 2,m3,m 4) T .
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f A mi m2 m3 m4

f 1 -0.945 0.021 0.071 0.096 0.096
A -0.945 1 0.124 -0.016 -0.094 -0.094

mr 0.021 0.124 1 -0.194 -0.269 -0.268
m2 0.071 -0.016 -0.194 1 -0.287 -0.287
m3 0.096 -0.094 -0.269 -0.287 1 -0.287
m4 0.096 -0.094 -0.268 -0.287 -0.287 1

TAB. 3. Correlation coefficients of the estimated f values.

Between these quantities, there are n = 19 constraints:

( (Ml + m 2 + M 3 + Mn4 ) (1- (a - ao) (1- - f (I•-+AI2)

f(='<) iMR (1 - (a - ao) (f 0-))-f(1 1 8  A + I2 8

ms - (mMl + m3 M + M4 )

The measured values z and associated standard uncertainties are given in Table 2
under the row headings z and u(z). All measured values are assumed to be uncorrelated.

By solving the normal equations, the estimates € and / and associated standard
uncertainties given in Table 2 under the row headings ¢, u((), 0 and u(03) are obtained.
Selected correlation coefficients derived from D(i3, ý)- are given in Table 3. The ob-
served minimum X2 value is X(C, z) = 8.6 which should be compared to the expectation
value v = n - k = 19 - 6 = 13. Since P {X2 (13) > 8.6} = 80.3%, it is concluded that
the measured values are consistent with the specified constraints taking into account the
measurement uncertainties. This conclusion is confirmed by the calculated normalized
deviations given in Table 2 under the row heading d; all normalized deviations satisfy
the criterion Idl < 2:

From the estimates of the quantities f and A and the associated covariance matrix,
the error of indication E, defined as

E = I- IR = I-- f (I+ AI 2 ),

and the associated standard uncertainty u(E) can be calculated as a function of the
indication I. The result is shown in Figure 1 as the full lines representing E - u(E), E,
and E+u(E). The measured points E, i = 1,...., 18 shown in the figure are the observed
average balance indications Ii minus the corresponding reference values IR. The error
bars of the measured points indicate the standard uncertainties u(Ei) that have been
calculated taking into account the covariance between Ii and IR.

10 Example: Evaluation of calibration history

A weight (named Rlmg) of nominal mass 1 mg has been calibrated 39 times in the
period 1992-2001. For calibration number i, the mass mi of the weight at the time
t, and the associated standard uncertainties u(mi) and u(ti) are given. The calibration
history of the weight is shown in Figure 2 as dots with error bars indicating the standard
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Balance BP221S

0.00

-0.05

.0.10- - i-

Fit+u(Fit)

.. 15 Fit-u(Fit)"0.15 0 Measured

-0.20

-0.25

0 50 100 150 200 250

Balance indication 1/g

FIG. 1. Error of indication of the calibrated balance.

uncertainties; the scale mark 1992-01 on the time axis indicates the position of the date
1 January 1992 etc.

Due to wear and changes in the amount of dirt adsorbed to the surface, the mass of
the weight is expected to change in time. A reasonable model of the change in mass as a
function of time is a superposition of a deterministic linear drift and a random variation

mi = al ÷a2ti+ (5mi , i =1,...,39,

where 6mi is a random variable with zero expectation and variance a2 . The drift para-
meters a,, a2 and the associated covariance matrix as well as the variance a 2 are unknown
a priori and are to be estimated from the calibration history available. Once the estim-
ates &I and &2 have been found, it is possible to predict a value fh of the mass of the
weight as a function of time t

7Ih = &I + &2t + 6m,

where 6m = 0 with standard uncertainty u(6m) = a. The standard uncertainty of the
predicted mass value is given by

u2(1) = u 2 (al) + t2u 2 (&2 ) + 2tu(&l, a2) + a2 .

The measurement model used for evaluating the calibration history is

= (mli, ... ,m73,t1,...,t3MI,... ,6m 39 )T , ' = (a,, a2 )T,
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R1 mg (Before adjustment of a)

1.0705

'.0701-T
I 0701- = Reo-÷l
1.69 ''4 I~ Tignoro

:4697-___ 

Ft

j 1V=37 Xý =66.6 a=Opg

1.06911
1992-01 1993-01 1994-01 1995-01 1996-01 1997-01 1998-01 1999-01 2000-01 2001-01 2002-01

"Time of Calibratlon

S49000

2.000 •••

. * .• 'v -*;• : ,

-2.0001-

-4.000

1992-01 1993-01 1994-01 1995-01 1996-01 1997-01 1998-01 1999-01 2000-01 2001-01 2002-01

Time of Calibration

FIG. 2. Evaluation of the calibration history of a 1 mg weight assuming that a = 0.

R1 mg (After adjustment of ()

1.0705-

1.0691 13 . . . .

107012-

1992-01 1 993-01 1 994 -01 19 95.01 1995.01 1997-01 1998-01 1909- 2000-01 2001-01 2 0e02-01

Time of Calibration

a' 2.0002.o

1009- LI -r- - 0 19• 01•

---
2.000/

-4.0090-

1992-01 1993-01 1994-01 1995-01 1996-01 1997-01 1998-01 1999-01 2000-01 2001-01 2002-01

Time of Calibration

FIG. 3. Evaluation of the calibration history of the 1 mg weight with a adjusted
to 0.092 pg.

MI - (a + l+ 51

f(Ol, 0)=• .
M39 -- (aT + a2t39 - 6M39)

The measured values z are given by the calibration history, except for the values of
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Jmi, i = 1,. .. ,39 which are set equal to the expectation value zero. The associated cov-
ariance matrix u(z, zT) = EJ is built up from the uncertainties u(mi) and u(ti) available
from the calibration history and a negligible but finite5 initial value of the unknown
variance a2 . Since the standard uncertainties u(mi) are of the order 0.1 Pg, the value
•-1E-07 pg is considered negligible and is selected as a starting point.

By solving the normal equations, estimates &1 and h2 of the drift parameters and the
associated covariance matrix are found after a few iterations. The predicted value rf of
the mass of the weight and the associated standard uncertainty u(fn) as a function of
time are shown in Figure 2 as solid lines. The normalized deviations d associated with
the mass values mi are shown in Figure 2 as well 6 . The observed minimum chi-square
value is X2 = 66.6 which is large compared to the expectation value v' = 39 - 2 = 37.
Since P{X2 (37) > 66.6) = 0.2%, the hypothesis a = 0, or no random variation in the
mass, is rejected at a 0.2% level of significance.

The value of a is therefore increased as described in Section 8 until the calculated
minimum X2 value becomes equal to its expectation value v = 37. In this way the
standard uncertainty reflecting the random variation of the mass of the weight is found
to be a=0.092 pg. The result of the evaluation of the calibration history after adjustment
of a is shown in Figure 3. Note the significant increase in the standard uncertainty of
the predicted value of the mass of the weight and the decrease in the absolute value of
the normalized deviations d.

The calibration history can also be evaluated by an iterative technique based on linear
regression [3]. The results obtained are identical to the results presented in this section.

11 Case I: Univariate output quantity, Y = h(X 1 ,... ,XN)

In this section it is shown that the evaluation of measurements by the method of least
squares is consistent with the generally accepted principles for evaluating measurement
uncertainty as described in the GUM [1].

Using the nomenclature of the GUM, a univariate output quantity Y is assumed to
be related to N input quantities X 1 , ... , XN through a specified function h,

Y = h(Xl,..., XN).

The values assigned to the input and output quantities are denoted x 1 ,. . , XN and
by y respectively. In the nomenclature of this paper, the measurement, model is

S(X,1 ... , XN )T , •--(Y),

f(/3,C) = (Y - h(Xl,..., XN)) = 0.

The measured values are
Z = (X1, ... , xN )T

5 1f the variance 0,2 is assumed to be exactly zero, the quantities 5mi have to be removed from the model. Otherwise
the covariance matrix E will be singular.

6 The absolute value of normalized deviations of ti and 3mi is equal to the absolute value of the normalized
deviation of mi.
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with the known covariance matrix

U 2 (x1) ... U(Xl,XN)

S= u(z, z T)=

u(XN,xI) ... 2 (xzrN)

The coefficient matrix D of the normal equations is

( 0 0 (1,N) 1

D(4, ,) 0 (N,1) E-1 -Vxh(x)T

1 -Vxh(x) 0

where

V~h- Oh Ah
(oX1''"' OXN •

In the present case, the solution to the normal equations is found after one iteration,

y=f3=h(xl,...,XN) , 4=(Xl,...,xN)T, A=0.

The associated covariances are given by

u2 (y) u(y, T) ((1j1))

u(,y) u( ,CT ) 0(N') 1)
o(1,1) ()W,N) _U2(A)

Vxh(x) 2E Vxh(X)T Vxh(x) E 1
--- E Vxh(x)T E 0 .

1 0

In other words,
2N N Oh

2(y) Vxh(x) EVxh(x)T Z cu(xi,xj)cj, c =- x (xi)
*=1 j=1

which is identical to the linear variance propagation formula given in the GUM.

12 Case II: Linear regression, Y = Xa
Linear regression is applied when there is a linear relationship Y = Xa between some
observed quantities Y and some unknown quantities a. The design matrix X is made up
of known elements that may be given as specified functions of one or several independent
variables. In the notation of this paper, the measurement model for the linear regression
problem is

=y (Y1,...,Y.)T , 9 a= (a,...., ak)T,

f(,3) =Y - Xa = 0,

Swhere X(n,k) is the known design matrix. The measured values are

Z= y =(Y1,..., Yn)T
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with known covariance matrix

( 2(yl) -. (yl, yn)

= u(z,z) = ( ".. )
"U(Yn, Yl) ... U1 (Y-)

The coefficient matrix D of the normal equations is

0 (k,k) 0 (k,n) _XT

D(/3,C) = 0 (n,k) E-1 I(n'n)
-X I(n'n) 0(n'n)

Again, the solution to the normal equations is found after one iteration,

fi -CXTT-ly , S'--¢-Xa , A=-- -(Y-y)

where C (XTF-IX)-1. The associated covariances are given by

u(fi, fi) U(fir, -T) ()(kl-f) -

()(f,,k) On)U - u)(n,)T)

C CXT -cxTE-1

= XC XCXT I _ XCXT-1

( E-1XC xTE- )-
that is,

fi = CXTE-ly , U(fifiT) = C =(xT-x)-1

as is known from the theory of linear regression.

13 Case III: Repeated observations of a single quantity
Assume that a quantity X is measured n times with the same uncertainty U. Such a
measurement can be modelled by n quantities X 1, .... , X, having a common value P

¢=X = (X1'.... ,x.)T ,f=() ,

XI-p P

fp, -=0.

The measured values are
Z --- X --- (X1,... -,Xn )T'

and under the assumption that the measurement results are mutually independent, the
associated covariance matrix is given by

E=u(z,zT)= ". )

0 ... U 2
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The coefficient matrix D of the normal equations is
S0(1,1) 0(1,n) -- 1(l'n) )

D(n3 ,)) =-21(n1 ) I n ,n
_1(n,l) I(n,n) 0(n,n)

where 1 denotes a matrix with all elements equal to 1. The solution of the normal
equations is found after one iteration,

in
1 -(

i= 1

The associated covariances are given by
U U2(p) U(A',XT) 0(l'),n)

u(Xý,/i) u(X, tT) 0(n'n) = D(I3,C) 1

0(n'1) 0(n'n) -_U(A, AT)0 .2 __-1 a-2 n-11 (1,n) n-ll1(1,n)

= r2 n-1 1 (n,1) or2n-11(n,n) I(n,n) -n-1l(n,n)

n- 1 1(n,l) I(n,n) - n-l1 n,n) u- 2 (n- 1 1(n,n) (n,n))

As expected,
1

nt= E- x• , u2()o= 2/n.
z= 1

If a 2 is not known a priori, it can be estimated by solving the equation

X 2(ý;Z)= n x 2/2 -n ,

i=1

i.e.,

i l

which is the well known expression for the experimental standard deviation s.

14 Conclusion
A general technique for evaluation of measurements by the method of Least Squares
has been presented. The applicability of the method has been demonstrated by two
examples. It has been shown that the method is fully compatible with the generally
accepted principles for evaluation of measurement uncertainty laid down in the GUM
and that ordinary linear regression is just a special case of the method.

The input to the method consists of

" An estimate of the value of each measured quantity, including any relevant influence
quantity.

"* The covariance matrix of these estimates formed by the standard uncertainties of
the estimates and the correlation coefficients between the estimates.
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o A measurement model describing all the known relations between the measured
quantities and some additional quantities (if needed) for which no prior information
is available.

The output of the method consists of

o An adjusted estimate of the value of each measured quantity and an estimate of
each additional quantity introduced in the measurement model.

* The covariance matrix of all these estimates from which the standard uncertainties
and correlation coefficients can be calculated.

o A chi-square value which is a measure of the degree of consistency between the
measurement model, the input estimates, and the covariances of the input quant-
ities.

The adjusted estimate of the value of a measured quantity differs from the input
estimate only if the measurement model imposes additional information regarding the
value of that particular quantity. In that case the standard uncertainty of the adjusted
estimate will be smaller than the standard uncertainty of the input estimate. For a
good measurement, the difference between the adjusted estimate and the input estimate
of a measured quantity should not be large compared to the standard uncertainty of
that difference. It has therefore been suggested that the ratio d of the difference to its
standard uncertainty is calculated and assessed against a selected criterion, e.g. Idl < 2.
By plotting the d values of the adjusted estimates it is possible to assess whether a too
high chi-square value is caused by a few poor input estimates or is due to a poor model.
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